Hopf bifurcation for non-densely defined Cauchy problems
نویسندگان
چکیده
In this paper, we establish a Hopf bifurcation theorem for abstract Cauchy problems in which the linear operator is not densely defined and is not a Hille–Yosida operator. The theorem is proved using the center manifold theory for nondensely defined Cauchy problems associated with the integrated semigroup theory. As applications, the main theorem is used to obtain a known Hopf bifurcation result for functional differential equations and a general Hopf bifurcation theorem for age-structured models. Mathematics Subject Classification (2000). 34K18, 35K90, 37L10.
منابع مشابه
Center Manifolds for Semilinear Equations with Non-dense Domain and Applications to Hopf Bifurcation in Age Structured Models
Several types of differential equations, such as delay differential equations, age-structure models in population dynamics, evolution equations with boundary conditions, can be written as semilinear Cauchy problems with an operator which is not densely defined in its domain. The goal of this paper is to develop a center manifold theory for semilinear Cauchy problems with non-dense domain. Using...
متن کاملProjectors on the Generalized Eigenspaces for Partial Differential Equations with Time Delay
To study the nonlinear dynamics, such as Hopf bifurcation, of partial differential equations with delay, one needs to consider the characteristic equation associated to the linearized equation and to determine the distribution of the eigenvalues; that is, to study the spectrum of the linear operator. In this paper we study the projectors on the generalized eigenspaces associated to some eigenva...
متن کاملNormal forms for semilinear equations with non-dense domain with applications to age structured models
Normal form theory is very important and useful in simplifying the forms of equations restricted on the center manifolds in studying nonlinear dynamical problems. In this paper, using the center manifold theorem associated with the integrated semigroup theory, we develop a normal form theory for semilinear Cauchy problems in which the linear operator is not densely defined and is not a Hille–Yo...
متن کاملCenter-unstable Manifolds for Nondensely Defined Cauchy Problems and Applications to Stability of Hopf Bifurcation
Center-unstable manifolds are very useful in investigating nonlinear dynamics of nonlinear evolution equations. In this paper, we first present a center-unstable manifold theory for abstract semilinear Cauchy problems with nondense domain. We especially focus on the stability property of the center-unstable manifold. Then we study the stability of Hopf bifurcation, that is, stability of the bif...
متن کاملProjectors on the generalized eigenspaces for functional differential equations using integrated semigroups
The aim of this article is to derive explicit formulas for the projectors on the generalized eigenspaces associated to some eigenvalues for linear functional differential equations (FDE) by using integrated semigroup theory. The idea is to formulate the FDE as a non-densely defined Cauchy problem and obtain an explicit formula for the integrated solutions of the non-densely defined Cauchy probl...
متن کامل